- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Abdi, Mania (3)
-
Desnoyers, Peter (3)
-
Hajkazemi, Mohammad Hossein (3)
-
Kaynar, Emine Ugur (3)
-
Krieger, Orran (3)
-
Aschenbrenner, Vojtech (2)
-
Mossayebzadeh, Amin (2)
-
Mosayyebzadeh, Amin (1)
-
Rudolph, Larry (1)
-
Turk, Ata (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the increasing dominance of SSDs for local storage, today's network mounted virtual disks can no longer offer competitive performance. We propose a Log-Structured Virtual Disk (LSVD) that couples log-structured approaches at both the cache and storage layer to provide a virtual disk on top of S3-like storage. Both cache and backend store are order-preserving, enabling LSVD to provide strong consistency guarantees in case of failure. Our prototype demonstrates that the approach preserves all the advantages of virtual disks, while offering dramatic performance improvements over not only commonly used virtual disks, but the same disks combined with inconsistent (i.e. unsafe) local caching.more » « less
-
Hajkazemi, Mohammad Hossein; Aschenbrenner, Vojtech; Abdi, Mania; Kaynar, Emine Ugur; Mossayebzadeh, Amin; Krieger, Orran; Desnoyers, Peter (, EuroSys '22: Proceedings of the Seventeenth European Conference on Computer Systems)With the increasing dominance of SSDs for local storage, today's network mounted virtual disks can no longer offer competitive performance. We propose a Log-Structured Virtual Disk (LSVD) that couples log-structured approaches at both the cache and storage layer to provide a virtual disk on top of S3-like storage. Both cache and backend store are order-preserving, enabling LSVD to provide strong consistency guarantees in case of failure. Our prototype demonstrates that the approach preserves all the advantages of virtual disks, while offering dramatic performance improvements over not only commonly used virtual disks, but the same disks combined with inconsistent (i.e. unsafe) local caching.more » « less
-
Abdi, Mania; Mosayyebzadeh, Amin; Hajkazemi, Mohammad Hossein; Kaynar, Emine Ugur; Turk, Ata; Rudolph, Larry; Krieger, Orran; Desnoyers, Peter (, 19th USENIX Conference on File and Storage Technologies (FAST 21))Kariz is a new architecture for caching data from datalakes accessed, potentially concurrently, by multiple analytic platforms. It integrates rich information from analytics platforms with global knowledge about demand and resource availability to enable sophisticated cache management and prefetching strategies that, for example, combine historical run time information with job dependency graphs (DAGs), information about the cache state and sharing across compute clusters. Our prototype supports multiple analytic frameworks (Pig/Hadoop and Spark), and we show that the required changes are modest. We have implemented three algorithms in Kariz for optimizing the caching of individual queries (one from the literature, and two novel to our platform) and three policies for optimizing across queries from, potentially, multiple different clusters. With an algorithm that fully exploits the rich information available from Kariz, we demonstrate major speedups (as much as 3×) for TPC-H and TPC-DS.more » « less
An official website of the United States government

Full Text Available